# Symbolic Computation for fun and for profit 

Hari

Devcon Bogota. Oct 13, 2022.

How do we optimize this code?

```
function can_revert(uint x, uint y, uint z) pure returns (uint) {
    if (x < y) {
        if (y < z) {
            if (z<x) {
                        revert("bad");
            }
        }
    }
    return 13;
}
```


## What is symbolic computation?

- About representing properties using mathematical equations.
- Using solutions of the equations to reason about properties.
- Usually the system having a solution means a property can be violated.
- Usually the system having no solutions means a property is always true.


## How do we represent a Yul variable?

- Variables in EVM are 256 bit integers.
- Most of the time, you represent variables as an element of integers $(\mathbb{Z})$.
- If possible, add constraints $0 \leq x \leq 2^{256}-1$.


## How do we assign variables a value?

```
{
    let x := 1
    let y := calldataload(0)
        let z := lt(x, y)
}
- Can we handle every assignment?
\{
let x := 1
switch calldataload(0)
case 1 \{ \(\mathrm{x}:=2\}\)
case \(2\{\mathrm{x}:=3\}\)
default \{ \(x\) := 4 \}
\}
```

- We want to represent each assignment by constraints.


## SSA (Single Static Assignment) Variables

```
{
    let x := calldataload(0)
    let y := calldataload(32)
    // y is not SSA
    y := add(y, calldataload(64))
}
But you can transform it into:
{
    let x := calldataload(0)
    let y := calldataload(32)
    let z := add(y, calldataload(64))
    // replace all references to y after this by z.
}
```


## SSA Variables

- We only want to work with SSA variables.
- It's not always possible to do a Yul to Yul transform such that all variables are SSA.
- But we can still get a lot done. The Yul optimizer has an SSATransform step that transforms Yul into "pseudo SSA format".
- Whenever an non-SSA variable is encountered during analysis, replace it by a "free variable".
- Each read would be replaced by a fresh free variable.


## Encoding EVM Instructions

```
function add(uint x, uint y) pure returns (uint z) {
    z = x + y;
}
- For \(0 \leq x, y, z \leq 2^{256}-1\) and \(x, y, z \in \mathbb{Z}\).
- Symbolically represent: \(z=x+y\) ?
```

- EVM semantics: $\operatorname{add}(x, y)=x+y\left(\bmod 2^{256}\right)$
- $z=x+y\left(\bmod 2^{256}\right)$.
- Checked arithmetic: the value is only defined when $x+y<2^{256}$

Let's build a symbolic solver for lt, gt, iszero

$$
\begin{aligned}
\operatorname{lt}(a, b) & = \begin{cases}1 & \text { if } a<b \\
0 & \text { if } b \leq a\end{cases} \\
\operatorname{gt}(a, b) & = \begin{cases}0 & \text { if } a \leq b \\
1 & \text { if } b<a\end{cases} \\
\text { iszero }(a) & = \begin{cases}1 & \text { if } a=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

## Difference Logic

- Variables $x_{1}, \cdots, x_{n}$ that are integers.
- Constraints of the form $x_{i}-x_{j} \leq k_{i, j}$ where $k_{i, j}$ is an constant.


## Example:

Let $x, y$ and $z$ be integer variables and let there be constraints:

1. $x-y \leq 4$
2. $x-z \leq 3$

Does the system have a solution?

## DL Example

The assignments $x=4, y=0$ and $z=1$ satisfies $x-y \leq 4$ and $x-z \leq 3$.

## DL Example

What about:

1. $x-y \leq 4$
2. $y-z \leq 3$
3. $z-x \leq-8$

Does this system have a solution?

## DL Example

It doesn't have a solution!
Proof: Assume there is a solution, let's add all the three equations:

$$
\begin{array}{rlrl}
(x-y)+(y-z)+(z-x) & \leq & 4+3+-8 \\
0 & \leq & & -1
\end{array}
$$

Which is a contradiction.

## Solver for DL

For a constraint $a-b \leq k$, create nodes $a$ and $b$ with a directed edge from $b$ to $a$ of weight $k$.
Does it have a negative cycle?


Negative cycles $\Longleftrightarrow$ the constraints have no solutions.

## Bellman Ford

- Solving DL for unsatisfiablity: look for negative cycle.
- Bellman Ford can be used to compute this.
- Very easy to implement: can even be written in Solidity. See Leo's dl-symb-exec-sol.
- See "Building an End-to-End EVM Symbolic Execution Engine in Solidity" tomorrow at 11:00 for more details.


## Insight about unsatisfiablity

- Unsatisfiablity: when the set of constraints have no solution.
- We are generous about ignoring constraints that we can't solve.
- As long as we only care about unsatisfiablity, we can do this.
- Only optimize when the constraints are unsatisfiable. Otherwise, leave the code unchanged.
lt, gt, iszero as DL constraints ${ }^{1}$

$$
\begin{aligned}
& \operatorname{lt}(a, b)= \begin{cases}1 & \text { iff } a-b \leq-1 \\
0 & \text { iff } b-a \leq 0\end{cases} \\
& \operatorname{gt}(a, b)= \begin{cases}0 & \text { iff } a-b \leq 0 \\
1 & \text { iff } b-a \leq-1\end{cases} \\
& \text { iszero }(a)= \begin{cases}1 & \text { iff } a-\text { zero } \leq 0 \\
0 & \text { iff zero }-a \leq-1\end{cases}
\end{aligned}
$$

In the last example, zero is just a variable we use to indicate zero.

## Encoding Yul

- We want to know if the value of an expression is always 0 or always non-zero.
- if cond \{ ... \}.
- Can we replace cond by 0 or 1 ?
- Inside the branch, we can add the additional constraint that cond = true.
- Example: if lt (x, y) \{ ... \}
- Check if adding the constraint $x<y$ makes the system unsatisfiable:
- In DL: $x-y \leq-1$.
- replace $\mathrm{lt}(\mathrm{x}, \mathrm{y})$ by 0 .
- Check if adding the constraint $x \geq y$ makes the system unsatisfiable:
- In DL: $y-x \leq 0$.
- replace $\mathrm{lt}(\mathrm{x}, \mathrm{y})$ by 1 .
- Inside the if body, add the constraint $x<y$.
- In DL: $x-y \leq-1$.


## Can this function ever revert?

```
{
    let x := calldataload(0)
    let y := calldataload(32)
    let z := calldataload(64)
    if lt(x, y) {
            if lt(y, z) {
            // should be replaced by `if 0`
            if lt(z, x) {
                revert(0, 0)
            }
        }
    }
}
```


## Encoding

- Define variables $x, y, z \in \mathbb{Z}$.
- No additional constraints from calldataload (...).
- Dummy variable zero $\in \mathbb{Z}$.
- Add constraints for 256-bit numbers $\left(0 \leq a \leq 2^{256}-1\right)$ :

1. zero $-x \leq 0$, zero $-y \leq 0$, zero $-z \leq 0$
2. $x$ - zero $\leq 2^{256}-1, y-$ zero $\leq 2^{256}-1, z-$ zero $\leq 2^{256}-1$

- Inside each if branch, add the corresponding lt constraints:

1. $x-y \leq-1$
2. $y-z \leq-1$
3. $z-x \leq-1$

## Graph of the encoding ${ }^{2}$



[^0]Negative cycle? Unsatisfiable? ${ }^{3}$

${ }^{3} M=2^{256}-1$.

## Can this function ever revert?

```
{
    let x := calldataload(0)
    let y := calldataload(32)
    let z := calldataload(64)
    if lt(x, y) {
    if lt(y, z) {
            // Replace `if lt(z, x)` by `if 0`
            if O {
                revert(0, 0)
            }
        }
    }
}
```


## Proofs

- If we don't trust the solver, we can ask it to produce a proof.
- The proof in this case would be a set of constraints whose LHS would add up to 0 and RHS to negative.
- This can be verified.


## Statically analysing reachability and inferring constraints

```
error OutOfBounds();
contract C {
    uint[] arr;
    function f(uint idx) external view returns (uint) {
            if (idx >= arr.length) revert OutOfBounds();
        // compiler auto generates, the bound checks here.
        // But we can infer the constraint `idx < arr.length`
        return arr[idx];
    }
}
```

- Try to see if a branch will always terminate: either by reverting or returning.
- Add the opposite constraints outside the branch.


## Improvements

- Difference logic only allowed constraints of the form $x-y \leq k$.
- Next step: constraints of the form:

$$
a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\cdots+a_{n} \cdot x_{n} \leq b
$$

- where $a_{i}$ and $b$ are constants and $x_{i}$ is a symbolic variable in integers ${ }^{4}$ for $i=1, \cdots, n$.
- Linear programs and the Simplex method.
- You can encode add and sub.
- Requires branching to handle wrapped arithmetic.
- Encode mul $(\mathrm{x}, \mathrm{a})$ and $\operatorname{div}(\mathrm{x}, \mathrm{a})$ where a is a constant and x is symbolic.

[^1]
## Slides

https://hrkrshnn.com/t/devcon-bogota.pdf


[^0]:    ${ }^{2} M=2^{256}-1$.

[^1]:    ${ }^{4}$ We'll have to relax to Rational or Reals for faster solvers.

