
Symbolic Computation for fun and for profit

Hari

Devcon Bogota. Oct 13, 2022.



How do we optimize this code?

function can_revert(uint x, uint y, uint z) pure returns (uint) {
if (x < y) {

if (y < z) {
if (z < x) {

revert("bad");
}

}
}
return 13;

}



What is symbolic computation?

I About representing properties using mathematical equations.
I Using solutions of the equations to reason about properties.

I Usually the system having a solution means a property can be violated.
I Usually the system having no solutions means a property is always true.



How do we represent a Yul variable?

I Variables in EVM are 256 bit integers.
I Most of the time, you represent variables as an element of integers (Z).

I If possible, add constraints 0 ≤ x ≤ 2256 − 1.



How do we assign variables a value?

{
let x := 1
let y := calldataload(0)
let z := lt(x, y)

}

I We want to represent each assignment by constraints.
I Can we handle every assignment?

{
let x := 1
switch calldataload(0)
case 1 { x := 2 }
case 2 { x := 3 }
default { x := 4 }

}



SSA (Single Static Assignment) Variables

{
let x := calldataload(0)
let y := calldataload(32)
// y is not SSA
y := add(y, calldataload(64))

}

But you can transform it into:
{

let x := calldataload(0)
let y := calldataload(32)
let z := add(y, calldataload(64))
// replace all references to y after this by z.

}



SSA Variables

I We only want to work with SSA variables.
I It’s not always possible to do a Yul to Yul transform such that all variables are SSA.
I But we can still get a lot done. The Yul optimizer has an SSATransform step that

transforms Yul into "pseudo SSA format".
I Whenever an non-SSA variable is encountered during analysis, replace it by a "free

variable".
I Each read would be replaced by a fresh free variable.

https://github.com/ethereum/solidity/blob/develop/libyul/optimiser/SSATransform.cpp


Encoding EVM Instructions

function add(uint x, uint y) pure returns (uint z) {
z = x + y;

}

I For 0 ≤ x , y , z ≤ 2256 − 1 and x , y , z ∈ Z.
I Symbolically represent: z = x + y?



Add

I EVM semantics: add(x , y) = x + y (mod 2256)

I z = x + y (mod 2256).
I Checked arithmetic: the value is only defined when x + y < 2256



Let’s build a symbolic solver for lt, gt, iszero

lt(a, b) =

{
1 if a < b

0 if b ≤ a

gt(a, b) =

{
0 if a ≤ b

1 if b < a

iszero(a) =

{
1 if a = 0
0 otherwise



Difference Logic

I Variables x1, · · · , xn that are integers.
I Constraints of the form xi − xj ≤ ki ,j where ki ,j is an constant.

Example:
Let x , y and z be integer variables and let there be constraints:
1. x − y ≤ 4
2. x − z ≤ 3

Does the system have a solution?



DL Example

The assignments x = 4, y = 0 and z = 1 satisfies x − y ≤ 4 and x − z ≤ 3.



DL Example

What about:
1. x − y ≤ 4
2. y − z ≤ 3
3. z − x ≤ −8

Does this system have a solution?



DL Example

It doesn’t have a solution!
Proof: Assume there is a solution, let’s add all the three equations:

(x − y) + (y − z) + (z − x) ≤ 4+ 3+−8
0 ≤ −1

Which is a contradiction.



Solver for DL

For a constraint a− b ≤ k , create nodes a and b with a directed edge from b to a of
weight k .
Does it have a negative cycle?

y

x

4

z
-8

3

Negative cycles ⇐⇒ the constraints have no solutions.



Bellman Ford

I Solving DL for unsatisfiablity: look for negative cycle.
I Bellman Ford can be used to compute this.
I Very easy to implement: can even be written in Solidity. See Leo’s

dl-symb-exec-sol.
I See "Building an End-to-End EVM Symbolic Execution Engine in Solidity"

tomorrow at 11:00 for more details.

https://github.com/leonardoalt/dl_symb_exec_sol
https://app.devcon.org/schedule/z7ku97


Insight about unsatisfiablity

I Unsatisfiablity: when the set of constraints have no solution.
I We are generous about ignoring constraints that we can’t solve.
I As long as we only care about unsatisfiablity, we can do this.

I Only optimize when the constraints are unsatisfiable. Otherwise, leave the code

unchanged.



lt, gt, iszero as DL constraints1

lt(a, b) =

{
1 iff a− b ≤ −1
0 iff b − a ≤ 0

gt(a, b) =

{
0 iff a− b ≤ 0
1 iff b − a ≤ −1

iszero(a) =

{
1 iff a− zero ≤ 0
0 iff zero− a ≤ −1

In the last example, zero is just a variable we use to indicate zero.

1iff: if and only if.



Encoding Yul

I We want to know if the value of an expression is always 0 or always non-zero.
I if cond { ... }.

I Can we replace cond by 0 or 1?
I Inside the branch, we can add the additional constraint that cond = true.

I Example: if lt(x, y) { ... }
I Check if adding the constraint x < y makes the system unsatisfiable:

I In DL: x − y ≤ −1.
I replace lt(x, y) by 0.

I Check if adding the constraint x ≥ y makes the system unsatisfiable:

I In DL: y − x ≤ 0.
I replace lt(x, y) by 1.

I Inside the if body, add the constraint x < y.

I In DL: x − y ≤ −1.



Can this function ever revert?

{
let x := calldataload(0)
let y := calldataload(32)
let z := calldataload(64)
if lt(x, y) {

if lt(y, z) {
// should be replaced by `if 0`
if lt(z, x) {

revert(0, 0)
}

}
}

}



Encoding

I Define variables x , y , z ∈ Z.
I No additional constraints from calldataload(...).
I Dummy variable zero ∈ Z.
I Add constraints for 256-bit numbers (0 ≤ a ≤ 2256 − 1):

1. zero− x ≤ 0, zero− y ≤ 0, zero− z ≤ 0

2. x − zero ≤ 2256 − 1, y − zero ≤ 2256 − 1, z − zero ≤ 2256 − 1

I Inside each if branch, add the corresponding lt constraints:
1. x − y ≤ −1
2. y − z ≤ −1
3. z − x ≤ −1



Graph of the encoding2

x

zero

0

z
-1

M

y

M

M

-1

0

0

-1

2M = 2256 − 1.



Negative cycle? Unsatisfiable?3

x

zero

0

z
-1

M

y

M

M

-1

0

0

-1

3M = 2256 − 1.



Can this function ever revert?

{
let x := calldataload(0)
let y := calldataload(32)
let z := calldataload(64)
if lt(x, y) {

if lt(y, z) {
// Replace `if lt(z, x)` by `if 0`
if 0 {

revert(0, 0)
}

}
}

}



Proofs

I If we don’t trust the solver, we can ask it to produce a proof.
I The proof in this case would be a set of constraints whose LHS would add up to 0

and RHS to negative.
I This can be verified.



Statically analysing reachability and inferring constraints

error OutOfBounds();
contract C {

uint[] arr;
function f(uint idx) external view returns (uint) {

if (idx >= arr.length) revert OutOfBounds();
// compiler auto generates, the bound checks here.
// But we can infer the constraint `idx < arr.length`
return arr[idx];

}
}

I Try to see if a branch will always terminate: either by reverting or returning.
I Add the opposite constraints outside the branch.



Improvements

I Difference logic only allowed constraints of the form x − y ≤ k .
I Next step: constraints of the form:

a1 · x1 + a2 · x2 + · · ·+ an · xn ≤ b

I where ai and b are constants and xi is a symbolic variable in integers4 for

i = 1, · · · , n.

I Linear programs and the Simplex method.
I You can encode add and sub.

I Requires branching to handle wrapped arithmetic.

I Encode mul(x, a) and div(x, a) where a is a constant and x is symbolic.

4We’ll have to relax to Rational or Reals for faster solvers.



Slides

https://hrkrshnn.com/t/devcon-bogota.pdf

https://hrkrshnn.com/t/devcon-bogota.pdf

