
Topics in Solidity

Hari

Dappcamp. May 25, 2022



Designing contracts for gas efficiency

Why?
I Execution in EVM costs gas.
I You need to architect the code to minimize gas.
I This does not mean using inline assembly.



Gas consuming operations

I Storage: around 22000 gas for writing a fresh data in storage.
Reading from storage is 2100 gas.

I External calls. Calls (cold) has 2600 gas base. Additional 9000
gas for sending ETH in a call, as well as memory expansion
costs.



Example of a bad design

https://gist.github.com/hrkrshnn/
1025ec2b7672b1a1e2e40b2ab9508a75

https://gist.github.com/hrkrshnn/1025ec2b7672b1a1e2e40b2ab9508a75
https://gist.github.com/hrkrshnn/1025ec2b7672b1a1e2e40b2ab9508a75


Design tip

I Try to minimize storage writes, storage reads and external
calls.



What can we improve here?

contract C {
address owner = msg.sender;
function receive() external payable {
}
function withdraw() external {

require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}
}



Immutables

contract C {
address immutable owner = msg.sender;
function receive() external payable {
}
function withdraw() external {

require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}
}

Use constants if values are known at compile time. Use immutables
if values are known at deploy time.



Uniswap example

https://github.com/Uniswap/v2-core/blob/master/
contracts/UniswapV2Factory.sol
https://github.com/Uniswap/v3-core/blob/main/
contracts/UniswapV3Factory.sol

https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Factory.sol
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Factory.sol
https://github.com/Uniswap/v3-core/blob/main/contracts/UniswapV3Factory.sol
https://github.com/Uniswap/v3-core/blob/main/contracts/UniswapV3Factory.sol


Contract deployment

I Runtime code: the code that gets executed when you call a
deployed contract.

I Deploy time code: the code that is part of the constructor and
returns the runtime code.
I For example, the constructor can initialize the relevant state

variables (sstore). Then the final code gets returned.

contract One {
uint _one;
constructor() {

_one = 1;
}
function one() external view returns (uint) {

return _one;
}

}



Exercise

1. Try deploying a simple contract in Remix that uses a state
variable.

2. Change the state variable to an immutable.
3. Use the remix debugger to debug the deployment transaction

in both cases.



Slides

https://hrkrshnn.com/t/dappcamp.pdf

https://hrkrshnn.com/t/dappcamp.pdf

